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We extend the analysis of a thermal Brownian motor reported by Van den Broeck et al. �Phys. Rev. Lett. 93,
090601 �2004�� to a three-dimensional configuration. We calculate the friction coefficient, diffusion coefficient,
and drift velocity as functions of shape and present estimates based on physically realistic parameter values.
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I. INTRODUCTION

Spectacular advances in bio- and nanotechnology make it
possible, not only to measure or observe, but also to manipu-
late and construct objects at a very small scale. At the same
time there is growing interest in techniques which can add
functionality. In particular, the development of molecular en-
gines is a theme that has received great attention over the last
two decades. The appearance of fluctuations in small systems
has led to new concepts for characterizing or operating such
devices, exploiting rather than fighting these very same fluc-
tuations.

These so-called Brownian motors �1,2� have an additional
theoretical interest through their relation with the old issue of
Maxwell demons and the second law of thermodynamics. In
return, this theoretical connection allows one to make state-
ments on the efficiency of such engines �3� or to transform
them from engines into minirefrigerators �4,5�. Most of the
studies on Brownian motors start with an ad hoc separation
of systematic and noise terms, based on linear Langevin
equations. This approach, however, offers little insight into
the origin of the rectification of random fluctuations. As
pointed out by van Kampen �6�, the rectification of nonlinear
fluctuations cannot be addressed starting from the standard
Langevin description with additive Gaussian white noise. In
�7,8� a theoretical and numerical study of a thermal engine is
presented in which rectification arises at the level of nonlin-
ear response. The analysis therein starts from a microscopic
description based on Newton’s laws of motion. There is an-
other related distinct feature of the model: the asymmetry of
the thermal engine lies in the geometry of the motor itself, in
contrast to the asymmetry imposed by the application of an
external potential, appearing in the so-called flashing and
rocking ratchet models.

The characteristic properties of the engine, such as the
friction coefficient, the speed, and the diffusion coefficient,
are calculated exactly in �7,8� and are found to be in excel-
lent agreement with the results from hard disk molecular
dynamics. However, the results are reported in dimensionless
units, in part due to the fact that the analysis was, for reasons
of simplicity and for comparison with molecular dynamics,
limited to the case of two dimensions. In view of the tech-
nological interest of motors in bio- and nanotechnology, we
report here a full and detailed analysis of the three-
dimensional version. Our analysis is particularly welcome in
view of the spectacular developments in the nanotechnology
of chemical, mechanical, and electronic devices, including

wheels, ratchets, pivots, shafts, barrels, which can function
as gates, gears, switches, actuators, pedals, elevators,
muscles, motors, rotors, gyroscopes, etc �9–11�.

This paper is organized as follows. First, the model, no-
tations, and working hypothesis are introduced in Sec. II.
The calculation method, based on the kinetic theory of gases,
is presented in Sec. III, with a discussion of the analytical
solution following in Sec. IV. Finally, in Sec. V we report
and discuss the results for the friction coefficient, diffusion
coefficient, and drift velocity as functions of shape and
present estimates based on physically realistic parameter
values.

II. THE MODEL

The model presented in �7� reproduces in a simplified way
the principal ingredients of Feynman’s ratchet and pawl
mechanism �12�: a temperature difference between two res-
ervoirs and the presence in at least one reservoir of an asym-
metric object. The construction, extended to the case of three
spatial dimensions, is as follows. We consider any number of
reservoirs �denoted by index i�, each containing a gas at
equilibrium at a temperature Ti. Figure 1 gives a schematic
picture of the two-reservoir system. Solid objects with no
internal degrees of freedom, called “motor units,” are located
inside the containers. These objects are coupled rigidly to
each other, so that the motor moves as a single entity, with
total mass M, along a given straight axis, corresponding to

T1

T2

FIG. 1. The two-reservoir model of the thermal engine: two
solid objects are confined in separate containers �scaled down for
illustration purposes� that contain gases at temperatures T1 and T2.
The objects are assembled with a rigid connection. The ensemble
can move freely along the z axis.
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its single translational degree of freedom. For simplicity, we
disregard any rotational degree of freedom �for a detailed
discussion of this case, see �5��.

Due to collisions with the gas particles �mass m�, the mo-
tor will change its velocity V�t� in the course of time t. The
statistics of these collisions can be described under the as-
sumption of molecular chaos, which is valid when the gases
are in the high-Knudsen-number regime and the containers
are large enough to avoid acoustic and other boundary ef-
fects. In addition, the shape of the units’ surfaces must be
such that no recollisions with the motor occur, namely, for
convex and closed shapes. With these assumptions, the pre-
collisional velocities are random and uncorrelated. Hence the
time evolution of the probability P�V , t� that the motor has
speed V at time t can be described by a master equation:

�P�V,t�
�t

=� dV��W��V�V��P�V�,t� − W��V��V�P�V,t�� .

�1�

Here W��V�V�� represents the transition probability per unit
time for the motor to change its speed from V� to V.

III. KINETIC THEORY

In this section we study the collisions of gas particles
from either temperature reservoir with a motor part and de-
rive the resulting total transition probability W��V�V�� for the
motor to change speed from V� to V. We introduce a Carte-
sian coordinate system �x ,y ,z� where the z axis points along
the free direction of movement of the motor.

A. Conservation rules

A gas particle will, upon collision with a motor unit,

undergo an instantaneous change of velocity from v��

= �vx� ,vy� ,vz�� before collision to v� = �vx ,vy ,vz� afterward. Due
to conservation of momentum along the free z direction, one
has

mvz� + MV� = mvz + MV . �2�

In addition, when the collision is perfectly elastic, the total
energy is conserved:
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2 +
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2. �3�

We will also suppose that the collision is described in terms
of a �short-range� central force, implying that the component
of the momentum of the gas particle along any direction
tangential to the surface of the motor is conserved.

The orientation of the tangent plane to the motor surface
is determined uniquely by a normal outward vector on an
infinitesimal element dS of the surface at the point of colli-
sion. In spherical coordinates, this normal vector is given by

�e���Cart � �sin � cos �,sin � sin �,cos �� , �4�

with � the polar angle from the z axis �0����� and � the
azimuthal angle in the xy plane from the x axis �0��
�2��; see Fig. 2. We also introduce two mutually perpen-
dicular unit vectors within the tangent plane,

e�1,� � �cos � cos �, cos � sin �,− sin �� , �5�

e�2,� � �− sin �, cos �,0� , �6�

so that we can write the conservation of tangential momen-
tum as

v�� · e�1,� = v� · e�1,� , �7�

v�� · e�2,� = v� · e�2,� . �8�

Solving the conservation rules �Eqs. �2�, �3�, �7�, and �8�� for
V ,vx ,vy ,vz leads to the following expression for the postcol-
lisional speed V of the motor in terms of the precollisional
speeds:

V = V� +
2 m

M cos2 �

1 + m
M cos2 �

�vx� tan � cos �

+ vy� tan � sin � + vz� − V�� . �9�

B. Transition probability

The motor is subject to random collisions by gas particles
from the different reservoirs i. The particle density and ve-
locity distribution in reservoir i are denoted by �i and
�i�vx ,vy ,vz�, respectively. The contribution dWi��V�V�� to
the total transition probability W��V�V��, coming from colli-
sions on an infinitesimal surface element dSi of the motor
unit in reservoir i, can then be found by considering the
number of gas particles that collide with this surface element
dSi in a unit time step:

�e⊥

�e1,�

�e2,�

dS

ϕ

θ

FIG. 2. �Color online� Orientation of an infinitesimal surface
element dS represented by an outer-pointing unit normal vector e��

and determined by the spherical coordinates � and �. The polar
angle � is measured from the z axis, which is chosen as the free
direction of movement of the motor. x ,y complete the Cartesian
coordinate system and the azimuthal angle � starts from the x axis.
Two orthogonal unit vectors e�1,� and e�2,� determine the plane that is
tangent to the motor unit in dS.
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dWi��V�V�� = dSi�
−	

+	

dvx��
−	

+	

dvy��
−	

+	

dvz�H��V�� − v�� � · e���


��V�� − v�� � · e����i�i�vx�,vy�,vz����V − V� − B���


�vx� tan � cos � + vy� tan � sin � + vz� − V��� .

�10�

Here H represents the Heaviside function, � the Dirac distri-
bution, and

B��� =
2 m

M cos2 �

1 + m
M cos2 �

. �11�

The Dirac � distribution selects those particles that produce
the required postcollisional speed V, following the collision
rules �Eq. �9��. Assuming that the velocity distribution of the
gas particles is Maxwellian at the reservoir temperature Ti,

�i�vx,vy,vz� = � m

2�kBTi
	3/2

exp�−
m�vx

2 + vy
2 + vz

2�
2kBTi

	 ,

�12�

the integrals over vx� ,vy� ,vz� in Eq. �10� can be calculated
explicitly. The total transition probability for the motor to
change velocity from V� to V in a unit time is then found by
integrating dWi��V�V�� over the surface Si of each motor part
and summing over all the reservoirs i:

W��V�V�� =
1

4

i

�i� m

2�kBTi
��V − V��H�V − V��


�
Si,cos ��0
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dSi	

� M

m cos �
+ cos �	2

exp�−
m

2kBTi


cos2 �V� +
1

2
�1 +

M

m cos2 �
	�V − V���2� .

�13�

We note that in the case of a single reservoir, or for mul-
tiple reservoirs at the same temperature, the transition prob-
ability satisfies the following relation:

W��V�V��Peq�V�� = W��− V�� − V�Peq�− V� , �14�

with Peq�V� the Maxwell-Boltzmann distribution for the
speed V of the motor unit �at the temperature of the reser-
voir�s��. This is in agreement with the general principle of
detailed balance in a system at equilibrium �13�.

IV. SOLUTION METHOD

We follow the method of �8� to solve the master equation
�Eq. �1�� for the moments of the motor velocity,

�Vn� = �
−	

	

P�V,t�VndV . �15�

This method is based on the van Kampen 1 / expansion �6�.

A. Solution of the master equation

It is convenient to scale the motor velocity V to a dimen-
sionless variable

X =� M

kBTeff
V , �16�

with the effective temperature Teff to be determined self-
consistently from the condition �X2�=1 in steady state opera-
tion. We can expand the integrand in Eq. �1� in a Taylor
series about X�:

�P�X,t�
�t

= 

n=1

	
�− 1�n

n!

dn

dXn �Jn�X�P�X,t�� . �17�

Here the “jump moments” are given by

Jn�X� =� �XnW�X;�X�d�X , �18�

with W�X� ;�X�=W��X�X�� and �X=X�−X. Using Eq. �17�,
a coupled set of equations for the time evolution of the mo-
ments �Xn� can then be constructed:

��Xn�
�t

= 

k=1

n �n

k
	�Xn−kJk�X�� , �19�

with � n
k � the binomial coefficients.

The exact expression for the jump moments Jn�X� is ob-
tained by integration over �X in Eq. �18�. In terms of para-
bolic cylinder functions �14�,

Dn�z� = �exp�− z2/4�/��− n���
0

	

exp�− zx − x2/2�x−n−1dx

�for n � 0� , �20�

and the Gamma function ���, the result reads

Jn�X� =
2n

�2�
��n + 2���M

m
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dSi�cos � +
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m

1

cos �
	−n


exp�−
1

4

m

M

Teff

Ti
X2 cos2 �	


D−n−2�1

2
�m

M
�Teff

Ti
X cos �	 . �21�

An exact solution of Eq. �19� is not available. We therefore
turn to a perturbational approach in terms of the parameter

� = �m/M . �22�

This is consistent with the observation that the mass M of the
motor is expected to be much larger than the mass m of the
gas particles. Even for a motor with dimensions of nanom-
eters operating in a gaseous environment, � is of the order of
10−3.

The expansion of the parabolic cylinder functions is given
by
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2−n/2��n + 2�D−n−2�z�

= ��n + 2

2
	 − �2��n + 3

2
	z +

2n + 3

4
��n + 2

3
	z2

−
2n + 3

6�2
��n + 3

2
	z3 +

4n2 + 12n + 11

96


�„�2 + n�/2…z4 + O�z5� . �23�

Introducing a scaled time �=�2t, we find the following ex-
pansion for the equation of the first moment:

��X�
��

= 

i

�i�kBTi

m
�−1� Ti

Teff
�1,i − 2� 2

�
�X��2,i

+ ���Teff

Ti
�X2� −� Ti

Teff
	�3,i +

�2

3
� 2

�
�6�X�

−
Teff

Ti
�X3�	�4,i + �3�� Ti

Teff
−�Teff

Ti
�X2�	�5,i�

+ O��4� . �24�

The geometry of the motor is contained in the shape factors
�n,i, defined as

�n,i = �
Si

dSi cosn � . �25�

At this point we remark that the azimuthal angle � has
dropped out, and that the geometric dependency is deter-
mined only by the �polar� angle � between the surface and
the direction of movement. Also note that the term in �−1 in
Eq. �25� is zero by application of Gauss’s theorem

�1,i = �
Si

dSi cos � = �
Si

dSie�� · e�z = �
Vi

dVi��� · e�z� = 0,

�26�

where the last integral is over the interior volume Vi of a
motor part. This is consistent with the fact that there is no net
macroscopic force acting on the motor. The net motion that
will be revealed below is the effect of fluctuations only.

Similarly, for the equation of the second moment, one
finds the following expansion:

��X2�
��

= 

i

�i�kBTi

m
− 4� 2

�
�−

Ti

Teff
+ �X2�	�i

2

− 2��4� Ti

Teff
�X� −�Teff

Ti
�X3�	�i

3

+ 2�2� 2

�
�− 4

Ti

Teff
+ 5�X2� −

1

3

Teff

Ti
�X4�	�i

4�
+ O��3� . �27�

B. Linear relaxation

To order �0, Eq. �24� reduces to a linear relaxation law
M�t�V�=−��V� with �=
i�i the sum of linear friction coef-
ficients �i of each part of the object:

�i = 4�i�kBTim

2�
�2,i = �iv̄i�2,i, �28�

where �i=m�i is the mass density of the gas, v̄i

=�8kBTi / ��m� is the mean gas velocity, and �2,i is a geo-
metric factor.

C. Nonlinearity: Steady state directed motion

If a constant temperature difference between the reser-
voirs can be maintained for a time longer than the relaxation
time M /�, the probability distribution will relax to its steady
state value. Restricting ourselves to the first two moments,
we turn to the steady state solution of Eqs. �24� and �27�.
First, from Eq. �27� we determine the effective temperature
Teff, which was defined earlier by the condition �X2�=1. To
lowest order, �0, we find that Teff is the weighted average of
the reservoir temperatures:

Teff =



i

�iTi



i

�i

=



i

�i�2,iTi
3/2



i

�i�2,iTi
1/2

. �29�

Solving Eq. �24� to order �0 leads to a zero average drift
speed �X�=0. Rectification of the thermal fluctuations occurs

FIG. 3. Examples of simple
three-dimensional geometries that
can be treated analytically. The
parameters that determine the
relative areas of the surfaces are
indicated in the illustrations.
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at higher levels of the expansion and it is necessary to in-
clude nonlinear terms. Solving Eq. �24� up to order � gives
us an expression to lowest order for the average drift speed
of the motor,

�V� =�m

M
��kBTeff

8M



i

�i�Ti/Teff − 1��3,i



i

�i
�Ti/Teff�2,i

=�m

M
��kB

8M



i



j

�i� j�3,i�2,j�Ti − Tj��Tj

�

i

�i
�Ti�2,i	2 . �30�

V. RESULTS AND DISCUSSION

A. Friction and diffusion coefficients

Although not directly related to the main topic of this
work, we briefly pause to discuss the result for the linear
friction coefficient, given in Eq. �28�. Together with results
from Table I for the geometric factors �2, this result provides
the explicit expression for the linear friction coefficient of
corresponding basic shapes. The result for a spherical shape
with radius r,

� =
4

3
�r2�iv̄i, �31�

is in agreement with the result found in �15�. In combination
with the Einstein relation D=kBT /�, we also obtain the ex-
plicit formulas for the corresponding diffusion coefficients
D. As an illustration, numerical values are given in Fig. 4 for
various shapes of cross section �r2, r=100 nm. To be con-
crete, we consider highly diluted argon gas �density
1019 m−3� leading to diffusion coefficients of the order of
3
10−4 m2 /s, and corresponding friction coefficients of or-
der 1.5
10−17 N s /m. As expected, the conical shapes have
higher diffusion coefficients and lower friction as one con-
siders smaller opening angles �.

B. Equilibrium

When the reservoirs are all at the same temperature Ti
=T, we find Teff=T, and the distribution of the moments is
Gaussian,

�X� = 0, �X2� = 1, �X3� = 0, �X4� = 3, . . . . �32�

The notion that it is impossible to achieve directed motion
�or equivalently, to extract work� from a system in thermal
equilibrium is confirmed. At least two reservoirs at different
temperatures are necessary to break detailed balance and
make possible the rectification of thermal fluctuations.

C. Asymmetry

The geometry of the motor units enters into the expres-
sion of the average speed via the shape factors �2 and �3. In
Table I, we have reproduced these quantities for the objects
depicted in Fig. 3. As is clear from symmetry arguments, the
appearance of systematic motion in one direction requires,
apart from nonequilibrium conditions, also the breaking of
the spatial symmetry in the system. One easily verifies from
Eq. �25� that

TABLE I. The geometric moments �2 and �3 for some basic three-dimensional shapes. The lowest orders
�2 and �3 ��1=0� are tabulated in terms of the total surface area S of the geometry. For illustrations of the
shapes and their parameters, see Fig. 3.

Shape �2 /S �3 /S Surface S

Disk 1 0 2�r2

Blade 1 0 2lw

Sphere 1 /3 0 4�r2

Cone sin � sin ��sin �−1� �r2�1+csc ��
Pyramid sin � sin ��sin �−1� �1 /4�nr2 cot�� /n��1+csc ��

Spherical cap cos 2�+5 cos �+6
3 cos �+9

sin4 �
cos 2�+4 cos �−5

�r2�3+cos �� / �1+cos ��
Spherical cone 3 sin3 �−2 cos3 �+2

3 sin �−6 cos �+6
2 sin4 �+cos4 �−1
4 cos �−2 sin �−4

�r2csc ��1+2 tan�� /2��

FIG. 4. Diffusion coefficients of objects with different geom-
etries but identical cross section �r2 �r=100 nm� in highly diluted
argon gas �1019 m−3 particles, mean free path 2.3 �m� at 299 K
temperature. The geometries are �a� a disk, �b� a sphere, �c� a cone,
�d� a spherical cap, and �e� a spherical cone. See Fig. 3 for illustra-
tions. For �c�–�e� the shapes and hence the diffusion coefficients
depend on the opening angle � �degrees�.
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�n,i = 0, n odd, �33�

when the surface of a motor element possesses reflection
symmetry along the z axis, the direction of motion. Consis-
tent with this symmetry observation, we find that the drift
speed of the motor in steady state is indeed zero at lowest
order in the perturbation when �3,i=0; cf. Eq. �30�. It is,
however, interesting to note that reflection symmetry is a
sufficient but not a necessary condition for �3,i=0, and hence
for obtaining zero sustained motion �at least in this order of
the approximation�. Consider, for example, a spherical cone
�see Fig. 5�. For a specific opening angle of �55° �3,i be-
comes zero, even though there is no reflection symmetry. A
similar discussion can be applied to higher-order corrections
in the � expansion �featuring the appearance of the higher
shape factors �5, �7, and so on� indicating that there are
special shapes which will have a very low average speed
even though there are no immediate symmetry reasons to
expect it.

D. Temperature gradient

For simplicity we limit the discussion of the drift velocity,
in particular in relation to the applied temperature gradient,
to the case of two reservoirs. Furthermore, the impact of the
geometry is most clearly demonstrated when the motor units
have an identical shape in both reservoirs. There are then two
possibilities, namely, either the units have the same orienta-
tion �parallel�, or they are pointing in opposite directions
�antiparallel�; see Fig. 6 for a schematic representation. For
the first scenario, with �2,1=�2,2=�2 and �3,1=�3,2=�3, Eq.
�30� yields

�V�e =�m

M
��kB

8M

�1�2�T1 − T2���T2 − �T1�
��1

�T1 + �2
�T2�2

�3

�2
. �34�

For the second scenario, careful consideration of the sign
of cos � in Eq. �25� leads us to write �2,1=�2,2=�2 as in

the first scenario, but now, when �3,1=�3, it follows that
�3,2=−�3. The expression for the drift speed thus becomes

�V�o =�m

M
��kB

8M

�1�2�T1 − T2���T1 + �T2�
��1

�T1 + �2
�T2�2

�3

�2
. �35�

One striking feature of these results is that the drift velocity
is scale invariant. This is a general property: both �2 and �3
scale linearly with the total surface S of the motor units. As
they appear in the denominator and the numerator, respec-
tively, in Eqs. �3� and �35�, the scale dependence cancels out.
This becomes even more apparent for the particular cases
presented in Table I, where �2 /S and �3 /S are expressed in
topological terms. Note that the scale invariance of the drift
speed is only valid with respect to the scale of the entire
motor. The relative proportions of separate motor units do
matter. Note also that scale invariance applies when the de-
pendence on the mass M is disregarded. For comparison with
a physically realistic situation, we assume a constant density
of the motor, so that the drift velocity will decrease with
increasing size of an object, through its 1 /M dependence.

To investigate the departure from the equilibrium state,
we consider small deviations of T1 and T2 about the aver-
age T,

T1 = T +
�T

2
, T2 = T −

�T

2
, �36�

so that for �T /T�1 the drift speeds tend to

�V�e → −
1

16
��

2
�m

M

�1�2

��1 + �2�2

�3

�2
�kBT

M
��T

T
	2

,

�37�

σ2/S

σ3/S

FIG. 5. Geometric factors �dimensionless� �2 /S and �3 /S as
functions of the opening angle � �degrees� for a spherical cone,
with S the surface area. While �2 appears in the expression for the
friction coefficient, �3 relates to the drift speed of the motor. When
the geometry of the surface exhibits symmetry along the z axis �the
direction of movement�, �3 is zero, and the motor shows no di-
rected motion. The spherical cone is an example of a class of shapes
for which �3 can become zero, and hence the drift speed �at least to
the first approximation�, without, however, showing reflection sym-
metry. For this particular case, �3=0 for ��55°.

T1

T2

T1

T2

FIG. 6. Drift speed as a function of the temperature difference
�T=T1−T2 between the reservoirs for two configurations with
identical motor units: parallel �solid curves and lower inset� and
antiparallel �dashed curves and upper inset�. The units are cone
shaped �opening angle 30°� and the motor mass is 1000 kDa. Both
reservoirs are filled with argon gas of the same density and T2 is
fixed at 299 K. For small �T �see insets�, the dependence is para-
bolic for the parallel setup and linear for the antiparallel setup. The
drift speed is of order nm/s �parallel� and �m/s �antiparallel� for
�T�1 K.
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��T
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We note that the respective orientation of the motor ele-
ments, parallel or antiparallel, plays a crucial role. In the first
case the sustained average displacement is always in the
same direction �that of −�3�, regardless of the sign of �T.
This was to be expected because there is an additional sym-
metry in the system: the interchange of the temperature res-
ervoirs has no effect. From the point of view of irreversible
thermodynamics, this situation is special since there is no
linear relation between the thermodynamic force �the tem-
perature gradient� and flux �the resulting speed of the motor�.
For the second case of antiparallel alignment, one observes
the usual situation of linear response between thermody-
namic force and flux �2,3�: equilibrium is a point of flux
reversal, the direction of net motion reversing with �T inver-
sion.

As an illustration, we reproduce, in Table II, explicit val-
ues for the drift speed in the case of a single asymmetric unit,
namely, a cylindrically symmetric cone, positioned in anti-
parallel alignment in the two reservoirs under physically re-
alistic conditions. The degree of asymmetry is described by a

single parameter, the opening angle �. The geometric factors
�2 and �3 are known analytically �see Table I� and we find
the following simple expression for the drift speed:

�V� =�m

M
��kB

8M

�1�2�T1 − T2���T1 + �T2�
��1

�T1 + �2
�T2�2

�sin � − 1� .

�39�

The drift speed will become zero for �=90°, namely, when
the cone loses its asymmetry and is reduced to a flat disk. A
natural question is whether there is an optimal opening angle
�o that maximizes the drift speed. For a fixed cross section,
one finds �o= �sec−1����1+�5� /2��38°. If, on the other
hand, one assumes that the mass is kept constant, a maximal
speed is reached for an infinitely sharp cone.

Note finally the very strong size dependence: objects of
20 nm cover their length 5 times per second; for 5 nm size
objects this becomes 1200 times per second. To date, few
artificial linear molecular motors have been fabricated, and
comparison with our numerical results is not straightforward.
In one rotaxane-based system powered by light �16�, a
shuttle was moved 1.5 nm with a frequency of 10 kHz �see
also �17� for an improvement of this technique�. In �18� ex-
plicit numerical values for the drift speed of particles in a
theoretical flashing ratchet are presented as a function of par-
ticle radius. Given an optimized flashing ratchet, a particle of
diameter 100 nm can, in principle, drift almost 200 times its
own size �19 �m� in every second.

VI. CONCLUSION

We have calculated, on the basis of an exact microscopic
theory, the properties of a thermal Brownian motor in a
three-dimensional setup. When detailed balance is broken by
the application of a temperature gradient, a systematic net
speed appears, as given in Eq. �30�. As an example, for a
motor consisting of cone-shaped silica units of size 20 nm,
one obtains a drift speed of about 0.1 �m /s when subject to
0.1 K temperature difference in a gaseous environment. It
remains to be seen whether the predictions of our theoretical
analysis �involving various simplifications such as molecular
chaos, elastic and normal interactions between gas particles
and motor, expansion in mass ratio� provide a realistic esti-
mate, especially for motors operating in a viscous environ-
ment.
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